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ABSTRACT 

T h i s  i n v e s t i g a t i o n  is  concerned wi th  t h e  g e n e r a l  problem 
of man's a b i l i t y  t o  d i r e c t l y  c o n t r o l  a l a r g e  f l e x i b l e  launch 
v e h i c l e .  S p e c i f i c a l l y ,  t h e  effect  of a f l e x i b l e  body mode 
on p i l o t  c o n t r o l  of s imula ted  s i n g l e  a x i s  S a t u r n  V r i g i d  
body dynamics i s  s t u d i e d .  F i r s t  bending mode ampl i tude  
and n a t u r a l  f requency ,  and t h e  t y p e  of s i m u l a t i o n ,  f i x e d  
o r  moving base, a r e  the  v a r i a b l e s  cons ide red  most i n t e n s i v e l y .  
B r i e f  s t u d i e s  of v a r i a t i o n s  i n  t h e  RMS level  of t h e  d i s t u r b a n c e  
s i g n a l  and comparisons of t w o  proposed c o n t r o l  s t i c k  f i l t e r s  
and vehicle augmentation schemes are  inc luded .  

The e f f e c t s  of t h e  f l e x i b l e  mode on t h e  p i l o t  and h i s  
closed loop  performance are ana lyzed  by r a t i o s  of a t t i t u d e  
e r r o r  t o  d i s t u r b a n c e  s i g n a l  and c o n t r o l  s t i c k  o u t p u t  t o  
a t t i t u d e  error, and by computed p i l o t  t r a n s f e r  f u n c t i o n s .  

R e s u l t s  show t h a t  p i l o t ' s  a b i l i t y  t o  g e n e r a t e  l e a d  c o m -  
p e n s a t i o n  an6 t o  c o n t r o l  t h e  a t t i t u d e  e r r o r  i iecreased as 
t h e  bending mode ampli tude increased. S i g n i f i c a n t  d e t e r i o r a -  
t i o n  o c c u r r e d  a t  t h e  lowest bending mode ampl i tude ,  1/3 
t h e  v a l u e  a t  t he  proposed l o c a t i o n  of t h e  S a t u r n  V a t t i t u d e  
gy ro ,  under s tudy .  The p i l o t ' s  g a i n  and a b i l i t y  t o  c o n t r o l  
t h e  a t t i t u d e  e r r o r  decreased  d u r i n g  t h e  moving base e x p e r i -  
ments. Th i s  r e s u l t  i s  a t t r i b u t e d  t o  dynamics and non- 
l i n e a r i t i e s  associated wi th  t h e  s i m u l a t o r ,  a less s e n s i t i v e  
moving base d i s p l a y ,  and p o s s i b l y  v e s t i b u l a r  u n c e r t a i n t y .  
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and insensitivity concerning small deflections from the 
vertical. With increasing bending mode amplitude, pilot 
performance deteriorates at approximately the same rate 
for both w = 5 and 7 rad/sec. However, for a given 
amplitude,n#!e 5 rad/sec bending mode generates only one- 
half the acceleration of the 7 rad/sec bending mode. 

Thesis Supervisor: Laurence R. Young 
Title: Assistant Professor of Aeronautics and Astronautics 
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CHAPTER I 

INTRODUCTION 

. 

Several relatively recent studies have been conducted 

to determine the feasibility of using a pilot to control 

the attitude and trajectory of large flexible boosters during 

the launch into orbit. Along with other problems, these 

investigations considered the ability of the pilot to effec- 

tively control the unstable rigid body mode without exciting 

the relatively low frequency and highly sensitive Bend- 

ing mode beyond structural or attitude limitations. 

Hardy, et al, simulated the rigid and flexible body 

dynamics of the Saturn V booster and report that the visual 

and vestibular cues from flexible motions did not create 

serious problems. However, they obtained these results 

using a second order low pass filter to attenuate the high 

frequency components of the control stick output. 

1 

In a theoretical study, Teper and Jex agree that it would 

be possible for the pilot to directly control the missile, 

but recommend, among other things, replacing the second order 

stick filter with a single integration. 7 

In either case, stick filters reduce the bending mode 

effect at the cost of additional phase lag in series with 

an already difficult set of missile dynamics. 
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The objective of this thesis is to study more comprehen- 

sively the effect of a superimposed bending mode on the pilot's 

ability to control the single axis attitude of a missile with 

unstable rigid body dynamics. Hopefully, in spite of the 

restrictions to a particular set of rigid body dynamics, the 

results will be applicable to other missiles and large air- 

craft with signLf icant flexible mddes. 

The importance of the bending mode depends on many 

control system parameters and pilot characteristics. However, 

the relative natural frequencies of the two modes, the 

amplitude of the bending mode, and the type of simulation, 

fixed or moving base, were considered the most important, 

and attention was directed primarily at these factors. 

In general, the interaction between two modes in a 

feedback control system increases as the separation between 

the natural frequencies decreases. In this situation, there 

will be a direct relation between the degree of excitation 

of the bending mode and the frequency content of the control 

stick signal. In turn, this frequency content will be deter- 

mined partly by the difficulty of the rigid body control task 

assigned to the pilot. 

The simulated system dynamics included the dominant 

inverted pendulum rigid body mode of the Saturn V at peak 

dynamic pressure wnrb = .15, and the first bending mode. 

Bending mode frequencies of w nbd = 49 (rad/sec) and 25 

(rad/sec) were studied. The first bending mode natural 

frequency of the Saturn V at maximum dynamic pressure equals 

approximately 49 (rad/sec) . A value significantly closer 2 
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.’ 

to the pilot control frequencies chosen for the second 

frequency - 
For a given natural frequency, the flexible mode accelera- 

tion sensed by the pilot is proportional to the mode amplitude. 

An amplitude approximately equal to that sensed at the proposed 

attitude gyro station for the Saturn V was taken as a nominal 

value. Three other amplitudes, (0, . 3 3  nom., and 2.0 nom.), 

were studied in the fixed base experiments. A wider 

range, (0 to 4.0 nom), were used for the moving base work. The 

decrease in effective pilot control fixed the upper limit on 

the amplitude, and the onset of significant bending mode 

effects determined the lower. 

The pilot senses the existence of the bending mode by 

visual and vestibular cues. In order to assess the relative 

importance of these two inputs, the experiments were performed 

both fixed and moving base using a single axis of rotation. 

Fig. 1 contains a block diagram showing the position of 

the pilot, booster, displays, disturbance signal, and possible 

compensations in the signal axis control loop. Fig. 2 shows 

the components used for this investigation. 

For the purposes of this study, display and stick filters 

were not used except for a brief comparison of two suggested 

stick filters. The control stick filter was eliminated to 

find the deterioration of uncompensated pilot performance 

with increasing bending mode amplitude. From comparisons of the 

resulting increases in attitude error and structural loadings 

with attitude specifications and structural limitations, bending 
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mode amplitudes requiring the additional complexities of 

control stick filters may be determined. 

Rigid body rate compensation was added after 

preliminary experiments indicated the combination of 

uncompensated dynamics, noise signal, and bending mode 

created a very difficult control prob?_em, No bending 

mode rate information was included in the rate signal. 

Perfect filtering of the flexible portion of the raqe signal 

was assumed in order to study only direct control stick 

excitation of the bending mode. 

A random noise disturbance signal summed with the 

simulated dynamics output produced the moving base drive 

signal to the simulator and the fixed base error signal. 

The random noise signal replaced the wind spike distrubance of 

Ref. 1 to allow pilot transfer function computations. The 

noise signal entered as an attitude angle and not an accelera- 

tion into the dynamics, once again, to restrict direct 

bending mode excitation to the control stick output. 

The RMS value of the disturbance signal was chosen so 

that typical RMS attitude errors ranged from one to three 

degrees. These errors could be controlled with the maximum 

control torque of 4.4'/sec . 
made 15% higher than that recommended in Ref. 1. 

2 
This value was inadvertantly 

The disturbance consisted of a white Guassian signal 

shaped by two first order filters with break frequencies 

at 1 rad/sec. Two factors determined the frequency content of 

the signal. First, the noise signal had to contain sufficient 
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high frequency power t o  permit computat ion of a t r a n s f e r  

f u n c t i o n  va l id  t o  . 8  cps ,  Secondly,  t h e  signal c o u l d  n o t  

vary  so rapidly t h a t  t h e  s u b j e c t  w a s  unable  t o  c o n t r o l  t h e  

r i g i d  body p o r t i o n  of t h e  error s i g n a l .  

Bending mode i n f l u e n c e  on p i l o t  performance w a s  

measured by error t o  d i s t u r b a n c e  and p i l o t  c o n t r o l  s t i c k  

o u t p u t  t o  error s i g n a l  ra t ios ,  and by p i l o t  t r a n s f e r  f u n c t i o n s .  

The expe r imen ta l  part of t h e  thesis c o n s i s t e d  of both 

f i x e d  and moving base s t u d i e s  o f  v a r i a t i o n s  i n  bending mode 

ampl i tude  and na tura l ,  f requency,  and extended f i x e d  base 

s t u d i e s  i n c l u d i n g  s imula to r  dynamics, d i s t u r b a n c e  s igna ls  

w i t h  lower RMS v a l u e s ,  and s t i c k  f i l ters .  
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CHAPTER I1 

SIMULATION AND EQUIPMENT 

This chapter describes the simulated missile dynamics, 

and the equipment needed to instrument the control loop 

of Fig. 2. 

The equations of motion and parameter values describing 

the pitch axis dynamics of the Saturn V booster at maximum 

dynamic pressure were taken from Ref. 1. The linearized 

rigid body equations for small perturbations from the 

nominal trajectory are: 

In Appendix 1, these equations are reduced to the 

following relation between $rb and B :  
.. - 

1 57.3 
57.3 + Fa - 

P' 
ff 

( P + M _ V  V 
b 

- - -  M F  - M  'rb 
a ) 

57.3 a a 
'(p3 + V 

5:*3 Fa p2 - Ma p + 

After replacing the parameters with their values at 

maximum dynamic pressure and factoring: 

( p  + .0197)  
'rb - - -  1.15 
7 

a (p - . 3 4 )  (p + .40) (p - .0425) ( 2 . 5 )  
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This expression is simplified in Appendix 1 to: 

7.67 ( .  15) 

(P - .15) 2 -.., 'rb - 
B 

Finally, when the rigid body rate compensation recommended 

in Ref. 1 is added, results in Appendix 1 show: 

7.67 ( .  15) ' rb - = -  
B ( p  + 1.00) (p - .15) 

The elastic body mode may be represented by: 

(2.7) 

From Appendix 1, after certain assumptions and parameter 

value substitutions, the equation becomes: 

K(p2 + 212) 

(p2 + .01(7)p + 7 ) 
'bd - = 7 rad/sec for Wnbd 2 
- -  

B 
(2.9) 

2 2 + 15 ) 
'b, K ( P  for w = 5 radjsec nbd 2 
- =  

B ip2 + .01(5)p + 5 (2.10) 

The total expression for @tot/B in terms of K, a number 

proportional to the bending mode amplitude, and unbd, the 

natural frequency, becomes: 
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T l ~ e  r o o t  l ocus  technique  i s  used i n  Appendix 1 t o  f a c t o r  

( 5  and 7 nbd tne niimerator of ( 2 . 1 1 )  for t h e  two va lues  of w 

rad /sec)and  f o u r  va lues  of K ( . 0 0 2 2 ,  . 0 0 6 6 ,  . 0 1 3 2 ,  . 0 2 6 4 ) .  

The r e s u l t s  a r e  l i s t e d  below: 

= 7 r ad / sec ,  nbd W 

. 0 0 2 2 ( p  + 1 9 )  ( p  - 1 8 - 6 1  (P2 + I O 2 )  
K = . 0 0 2 2  +-tot  

( 2 . 1 2 )  

B (p  - . 15 )  ( p  + 1.00) ( p 2  + . 0 1 ( 7 ) P  + 7 2 )  

. 0 2 6 4 ( p  + 3 . 2 )  ( p  - 2 . 4 )  (p2  + ( 1 9 0 5 ) ~ )  ( 2 . 1 5 )  

( P  - . 15 )  ( p  + 1.00) ( p 2  + . 0 1 ( 7 ) p  + 72) '  

+ t o t  K = . 0 2 6 4  -= 
B 

K = . 0 0 2 2  

K = . 0 0 6 6  

K = . 0 1 3 2  

K = . 0 2 6 4  

= 5 rad /sec  nbd w 

. 0 0 2 2 ( p  + 2 2 . 7 )  ( p  - 2 2 . 7 )  (p2  + ( 5 - 8 ) 2 )  ( 2 0 1 6 )  

( P  - .15)  ( p  + 1 . 0 0 )  (p2  + . 0 1 ( 5 ) p  + 5 2 )  

+ t o t -  - -  

. 0 2 6 4 ( p  + 3 . 3 )  ( p  - 2 . 6 )  (p2 + ( 1 3 = 2 ) 2 )  ( 2 . 1 9 )  

( p  - . 15 )  ( p  + 1.00) ( p 2  + ( . 0 1 ) 5  P + 5 
2 

- -  @ t o t -  
a 

. 
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Figs. 3 and 4 show the analog computer program for the 

An EA1 TR-48 analog simulation of these missile dynamics. 

computer was used for the fixed base investigations 

Philbrick amplifiers for the moving base experiments. 

and 

For the case of the experiments concerning the stick 

filter proposed in Ref. 2, the dynamics associated with 

rigid body change. Teper and Jex recommend, in addition 

to the single integration stick filter, feeding 

back position as well as rate information. 

Appendix 1 shows that with these modifications and 

certain simplifications the effective rigid body dynamics 

become : 

'rb - - .85(4) - - 
2 

13 p + 2(.56)2 p + 22 
(2.20) 

With this change in rigid body dynamics the relation 

between $tot and B becomes: 

The root locus technique is applied to factor the numerator 

and the results appear below for K = .0066 and unbd = 7 rad/sec. 
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( 2 . 2 2 )  

The modif ied ana log  computer program for t h e s e  e q u a t i o n s  

appears  i n  F i g .  5. 

Fig.  6 c o n t a i n s  t h e  ana log  computer program r e q u i r e d  t o  

unb ias ,  amplify,  and f i l t e r  t h e  random n o i s e  s i g n a l .  The 

s i g n a l  on t h e  t a p e  r e c o r d e r  had a frequency spectrum f l a t  

t o  1000 cps. 

A m o t i o n  s i m u l a t o r  capab le  of r o t a t i o n  about  t w o  axes  

w a s  used f o r  t h e  moving base experiments  (see Fig.  7 ) .  

Because of  s u p e r i o r  r o l l  f requency r e sponse ,  t h e  experiments  

w e r e  performed about  t h e  ro l l -and  n o t  p i t c h  ax is .  The 

fregbency response of t h e  s i m u l a t o r  w i t h  s u b j e c t  was measured 

and found t o  be  second o r d e r  wi th  a n a t u r a l  f requency  of 

1.6 cps  and a damping r a t i o , c ; ,  equa l  t o  . 4 .  The phase 

s h i f t  a t  .8 cps was 3OP and 55' a t  1 . 2  cps .  

approximately 1/3' exis ted.  

A dead-zone of 

The c h a r a c t e r i s t i c s  of t h e  c o n t r o l  s t i c k s  f o r  t h e  f i x e d  

and moving base exper iments  appear  i n  F ig .  8. The f i x e d  

base c o n t r o l  s t i c k  w a s  r e s t r a i n e d  by a s t r o n g e r  s p r i n g .  

A t t i t u d e  error ,  f i x e d  base ,  and c a b  p o s i t i o n , m o v i n g  

base ,  was the  o n l y  in fo rma t ion  d i s p l a y e d  t o  t h e  s u b j e c t .  

I n  both cases, t h e  error  a n g l e  was r e p r e s e n t e d  on an  o s c i l l o s c o p e  
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by t h e  h o r i z o n t a l  d i s t a n c e  from t h e  c e n t e r  of t h e  s c r e e n  t o  

a gene ra t ed  v e r t i c a l  l i n e .  The scope s e n s i t i v i t y  w a s  1 cm/deg 

f o r  f i x e d  base  work and .6 cm/deg f o r  moving base  experiments .  

Four s i g n a l s ,  d i s t r u b a n c e ,  a t t i t u d e  error, s t i c k  o u t p u t ,  

and s imula t ed  m i s s i l e  dynamics o u t p u t  w e r e  recorded  on s t r i p  

c h a r t  r e c o r d e r s  and a f o u r  channel  F-M t a p e  r e c o r d e r ,  

(see Fig.  9 ) .  

F igs .  1 0  and 11 show t h e  s u b j e c t s '  p o s i t i o n ,  d i s p l a y ,  

and c o n t r o l  s t i c k  f o r  t h e  f i x e d  and moving base  i n v e s t i g a -  

t i o n s  r e s p e c t i v e l y .  
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CHAPTER I11 

PROCEDURE 

Three  s t u d e n t s  s e rved  as s u b j e c t s  i n  t h e  experiments .  

The s u b j e c t s  w e r e  s c reened  by t e s t i n g  t h e i r  a b i l i t y  

t o  c o n t r o l  uns t ab le  dynamics i n  a compensatory t r a c k i n g  t a s k  

and t o  ba lance  on one f o o t  w i thou t  v i s u a l  u ses .  

A f t e r  s e l e c t i o n ,  t h e  s u b j e c t s  p r a c t i c e d  c o n t r o l l i n g  

t h e  S a t u r n  V dynamics u n t i l  no f u r t h e r  improvement i n  

performance could be d e t e c t e d .  

Typ ica l ly ,  s e s s i o n s  lasted t w o  hours  and inc luded  twenty 

t o  twenty-f ive t r a c k i n g  runs  of 90  or 1 2 0  seconds  s e p a r a t e d  

by t h r e e  minute res t '  p e r i o d s .  

During a s e s s i o n ,  on ly  t h e  bending mode ampl i tude  changed. 

Usual ly ,  t h e  s e s s i o n  w a s  d iv ided  i n t o  s i x  runs  a t  each  of f o u r  

ampli tudes.  The bending mode ampl i tude  i n c r e a s e d  as  t h e  

s e s s i o n  progressed .  

Before each s e s s i o n ,  t h e  s u b j e c t s  w e r e  informed of t h e  

bending mode n a t u r a l  f requency.  I n  a d d i t i o n ,  t h e y  w e r e  t o l d  

of changes i n  bending mode ampli tude.  

The s u b j e c t s  w e r e  i n s t r u c t e d  t o  u s e  t h e  c o n t r o l  s t i c k  as 

necessary  t o  minimize t h e  d i s p l a y e d  e r r o r  u n t i l  t h e  d i s t r a c t i o n  

of bending mode o s c i l l a t i o n s  forced a r e d u c t i o n  o f  c o n t r o l  

e f f o r t s .  The s u b j e c t s  l e a r n e d  f a i r l y  q u i c k l y  by t r i a l  and 

error how much c o n t r o l  t o  u s e  a t  each bending  mode ampl i tude .  



c 

A 

D 

C 
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F 

G 

The c h a r t  below shows Lie c o n t e n t  and sequence of t h e  

sessions' and t h e  p a r t i c i p a t i n g  suh-ject. 
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Tl ie  exper i r ien ts  i n  S e r i e s  C were conclucked t o  f i n 6  w i i a t  

p a r t  o f  tile d i f f e r e n c e  detween fixeci and movirig Lase r e s u l t s  

shou ld  b e  a t t r i b u t e 6  t o  t n e  copu ina t ion  of s i m u l a t o r  dynan ics ,  

decreaseci u i s p l a y  s e n s i t i v i t y ,  anci l i g h t l y  r e s t r a i n e d  c o n t r o l  

s t i c k ,  

The i n t e r a c t i o n  between d i s t u r b a n c e  s i g n a l  ampl i tude  and 

performance d e t e r i o r a t i o n  w i t h  i n c r e a s i n g  bending mode ampli-  

t u d e  w a s  s t u d i e d  i n  S e r i e s  D. 

S e r i e s  E and F r e f l e c t  c u r i o s i t y  about  t h e  e f f e c t  of 

e s s e n t i a l l y  changing the dynamics t h e  p i l o t  must c o n t r o l  

from f o u r t h  t o  e i the r  f i f t h  o r  s i x t h  o r d e r  by t h e  a d d i t i o n  

of  a s t i c k  f i l t e r .  

To confirm t h a t  d e t e r i o r a t i o n  i n  performance w i t h  

i n c r e a s i n g  bending mode ampli tude d i d  n o t  occur  because  

o f  t h e  o r d e r  of p r e s e n t a t i o n  o r  knowledge of  ampl i tude ,  a 

s u b j e c t ,  w i thou t  t h i s  i n fo rma t ion ,  w a s  t e s t e d  i n  Series G .  

Fd t igue  w a s  checked as a p o s s l b l e  f a c t o r  by t e s t i n g  the 

s u b j e c t s ’  a b i l i t y  t o  c o n t r o l  t h e  r i g i d  body mode a l o n e  a t  

va r ious  times dur ing  t h e  t w o  hour s e s s i o n s .  

I n t e g r a l  s q u a r e  error v a l u e s  of t h e  n o i s e ,  e r ror ,  and 

s t i c k  outp i i t  s i y n a 1  s were c a l c u l < i t e d  by ampl i fy ing ,  s q u a r i n g ,  

< i t t e n u a t i n y  and i n t e y i - a t i n ( ~  tlic .e s l g n d s  Lor each  run.  E ’ i c . ; .  12 

c o n t a i n s  t h e  ana log  computer pc1tchiny p rogran  t h a t  p e r f  o r m e c i  

t h e s e  o p e r a t i o n s .  

T l i e s e  s c o r e s ,  p i l o t  t r a n s f e r  f u n c t i o n s ,  and s t r i p  c h a r t  

r eco rd ings  provided t h e  means t o  a n a l y z e  t h e  e f f e c t  of 

v a r i a t i o n s  i n  dynamics and expe r imen ta l  c o n d i t i o n s .  
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The e r r o r  t o  d i s t u r b a n c e  r a t i o ,  q w s  
measured t h e  p i l o t ' s  a b i l i t y  t o  c o n t r o l  t h e  a t t i t u d e  of 

t h e  s imula t ed  m i s s i l e .  

The c o n t r o l  o u t p u t  to  error r a t i o ,  q m  
and p i l o t  traasfer f u n c t i o n s  show more d i r e c t l y  t h e  r e s u l t s  

of changing c o n d i t i o n s  on t h e  p i l o t .  

This  second r a t i o  r e p r e s e n t s  an average  g a i n  f o r  t h e  

p i l o t  f o r  t h e  run ,  b u t  ignores  t h e  well-known dynamics 

a s s o c i a t e d  w i t h  t h e  human o p e r a t o r .  

The p i l o t  t r a n s f e r  f u n c t i o n s  w e r e  computed by a s p e c t r a l  

a n a l y s i s  method described i n  Appendix 2 .  

The approximate l e v e l s  of a c c e l e r a t i o n s  due t o  bending 

mode o s c i l l a t i o n s  w e r e  determined by a n a l y s i s  of t h e  i n d i v i d u a l  

s t r i p  c h a r t  r e c o r d i n g s .  

changes i n  p i l o t  c o n t r o l  a c t i o n s  as a f u n c t i o n  of bending 

more ampli tude.  

These r e c o r d i n g s  a l so  show c l e a r l y  
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CHAPTER IV 

DISCUSSION OF RESULTS 

The effect of variations in bending mode parameters 

and simulation conditions will be discussed from two 

standpoints: 

1. Changes in pilot control characteristics. 

2. Changes in closed loop attitude error performance. 

Strip chart recordings of the displayed attitude 

error and control stick movement are presented in Figs. 1 3  

and 14. These are taken from a fixed,base session with 

= 7 rad/sec. These recordings show qualitatively nbd w 

the reduction of effective pilot control and the increase 

in attitude error as the bending mode amplitude increases. 

With the bending mode removed entirely, the pilot 

used all available control power and behaved very non- 

linearily. In this case, only the amount of control 

power as set by the Saturn V recommendations of Ref. 1 

restricted the pilot, and the control stick output contained 

a significant amount of high frequency power. 

in pilot control strategy became necessary with non-zero 

bending mode amplitudes. If the subject failed to restrain 

A revision 
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I 

I C  

his control action, intolerable bending mode oscillations 

developed at even the lowest amplitude (1/3 nom.) under 
I 

study. In the process of attempting to alleviate this 

problem, the subject began to lose effective control 

of the rigid body portion of the attitude error. 

To analyze these effects more quantitatively, several 

criteria were employed. Pilot describing functions were 

measured for four sessions by a power spectral  L G b A A L A A y  UG 

explained in detail in Appendix B and associated references. 5,6 

Power spectral estimates of the attitude error and control 

stick signals are available from the describing function 

computation. In addition, RMS ratios of the control stick 

to the attitude error signal, v m  
attitude error to disturbance signal, d m  
were measured for the individual tracking runs. 

, and the 

, 

The describing function was calculated by the following 

formula: 

where : 

a I 3 ( w )  .=the cross power spectral estimate between the 

. .  disturbance signal and the control stick signal 

a l 2 ( w )  = the cross power spectral estimate between the 

disturbance signal and the displayed error 

signal. 
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The degree t o  which t h e  d e s c r i b i n g  f u n c t i o n  accounted 

f o r  t h e  p i l o t ' s  behavior  w a s  measured by t h e  c o r r e l a t i o n  

coef f ic ien t  : 

where : 

A,(&) = t he  power spectrum of t h e  d i s t u r b a n c e  s i g n a l  

f (,w) = t h e  power spectrum of t h e  c o n t r o l  s t i c k  s i g n a l  
33 

The va lue  of pZshou ld  be n e a r  u n i t y  i f  t h e  d e s c r i b i n g  

f u n c t i o n  accounts  f o r  m o s t  o f  t h e  o p e r a t o r ' s  character is t ics .  

The d e s c r i b i n g  f u n c t i o n  data i s  p r e s e n t e d  i n  Tables  1 

through 4 and p l o t t e d  i n  F igu res  15 through 2 2 .  The 

ampli tude d a t a  and f i t t e d  ampli tude r a t i o s  appear  i n  t h e  

f irst  f o u r  f i g u r e s .  The phase d a t a  are shown i n  t h e  l a s t  

f o u r .  

menta l  c o n d i t i o n  i s  l i s t e d  i n  t h e  Tables.  

P e r t i n e n t  i n fo rma t ion  about  t h e  associated e x p e r i -  

I t  should be  noted  t h a t  t h e  c o r r e l a t i o n  c o e f f i c i e n t s  

are n o t  c l o s e  t o  u n i t y  above 3 r ad / sec  f o r  t h e  f i x e d  

base experiments  and 2 r ad / sec  for  t h e  moving base  work. 

The recorded d i s t u r b a n c e  s i g n a l  c o n t a i n e d  o c c a s i o n a l  

s p i k e s  from an  ex t r aneous  sou rce .  These s p i k e s  showed up 

as an u n c o r r e l a t e d  wide-band s i g n a l  superimposed on t h e  

spectrum of t he  d i s t u r b a n c e .  On t h e  ave rage ,  t h e  wide-band 

spectrum ampli tude reached 1 / 1 0  of t h e  d i s t u r b a n c e  s i g n a l  
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power spectrum a t  2 . 7  rad/sec f i x e d  base ,  and a t  1 . 8  rad/sec 

moving base.  

Above these f r e q u e n c i e s ,  t h e  r e l i a b i l i t y  of t h e  d a t a  

drops  s h a r p l y  because only  a f r a c t i o n  of t h e  d i s t u r b a n c e  

s i g n a l  i s  uncontaminated. However, the form of t h e  

ampli tude and phase d a t a  remains r easonab le  t o  3 . 6  rad /sec .  

With these f a c t o r s  i n  mind,  t h e  d e s c r i b i n g  f u n c t i o n  r e s u l t s  

are r e t a i n e d  up t o  t h i s  f requency.  

T h e  d e s c r i b i n g  f u n c t i o n s  a r e  summarized i n  Table  5 .  

The impor t an t  r e s u l t s  a r e :  

1. The l e v e l  of p i l o t  g a i n  d e c r e a s e s  a s  t h e  bending 
mode ampli tude increases. 

2.  The phase l e a d  gene ra t ed  by t h e  p i l o t  decreases 
w i t h  i n c r e a s i n g  bending mode ampli tude.  

3 .  T h e  s u b j e c t s '  g a i n  was s i g n i f i c a n t l y  l o w e r  d u r i n g  
the moving base  tests t h a n  i n  t h e  f i x e d  base  
experiments .  

The lowering of s u b j e c t  g a i n  r e f l e c t s  h i s  a t t e m p t s  t o  

minimize bending mode e x c i t a t i o n s .  

The decrease i n  phase l e a d  as the bending mode ampli tude 

i n c r e a s e s  seems t o  be b e s t  accounted f o r  by a l a r g e r  dead- 

t i m e  d e l a y  i n  t h e  p i l o t  d e s c r i b i n g  func t ion .  The re  is  some 

s h i f t i n g  of t h e  pole-zero cQnibination, b u t  t h i s  i s  no t  a 

m a j o r  f a c t o r .  

The d i s t i n c t  r educ t ion  of s u b j e c t  moving base  g a i n  

compared w i t h  f i x e d  base r e s u l t s  w a s  unexpected. S imula t ion  

and s c a l i n g  f a c t o r s  were c a r e f u l l y  checked f o r  errors t h a t  

might  e x p l a i n  t he  effect .  
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The power spectral estimates of the error signal 

presented in Tables 6 through 9 show that the reduced 

moving base gain occurs because of increased error rather 

than lower control stick power. 

A series of fixed base experiments including 

the second order dynamics and dead-zone associated with 

the motion simulator plus the moving base control stick 

and display will be discussed in more detail later. 

However, these experiments did not indicate that the increased 

increased error could be attributed entirely to these 

factors. It should be pointed out, though, that not all 

the motion simulator non-linearities, such as stiction 

and backlash, were considered. The effect of these factors 

cannot be discounted because typical simulator movements 

were within the range of f 5'. 

Apart from this, the increased errors may be 

attributed to subject uncertainty about the location 

of the vertical during the moving base simulation. The 

subject's vestibular system may provide orientation informa- 

tion that is in error by a aegree or two. Furthermore, 

the scale on the moving base display was less sensitive 

and the grid was not as well defined as the fixed base 

display. 

In spite of the reduced gain, the subject was able 

to generate the Same amount if not more phase lead. For 

these reasons, the best explanation seems to involve 

neglected simulation non-linearities, a less sensitive 
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d i s p l a y ,  and perhaps  v e s t i b u l a r  confus ion  and i n s e n s i t i v i t y  

concerning very  s m a l l  angular  d e f l e c t i o n s  about  t h e  v e r t i c a l .  

Tables  6 th rough 9 i nc lude  t h e  power s p e c t r a l  estimates 

of t h e  e r r o r  and c o n t r o l  s t i c k  f o r  t h e  f o u r  s e s s i o n s  where 

d e s c r i b i n g  f u n c t i o n s  w e r e  computed. 

The c o n t r o l  s t i c k  power from Tables  7 and 8 has  been 

p l o t t e d  i n  F i g u r e s  2 3  and 2 4 .  These power s p e c t r a l  

estimates show: 

1. I n  g e n e r a l  p i l o t  c o n t r o l . p o w e r  a t  t h e  pr imary 

r i g i d  body c o n t r o l  f r equenc ie s  of .45 t o  1 . 8  r a d / s e c  

d e c r e a s e s  wi th  i n c r e a s i n g  bending mode ampl i tudes .  There 

a r e  e x c e p t i o n s  t o  t h i s  s t a t e m e n t ,  however, c o n s i d e r i n g  t h e  

i n c r e a s e s  i n  r i g i d  body e r r o r  power a t  t h e s e  f r e q u e n c i e s ,  

e f f e c t i v e  p i l o t  c o n t r o l  has  c e r t a i n l y  dec reased .  The same 

g e n e r a l  e f f e c t  appea r s  on t h e  ampl i tude  p l o t s  f o r  t h e  

d e s c r i b i n g  f u n c t i o n .  I n  t h i s  case t h e r e  i s  no cons idera-  

t i o n  of  l i n e a r  c o r r e l a t i o n .  

2.  I n  c e r t a i n  cases, t h e r e  has  been an a t t e m p t  t o  

t r a c k  t h e  h i g h e r  f requency bending mode error  a s  i n d i c a t e d  

by secondary peaks a l i t t l e  below t h e  bending mode n a t u r a l  

f requency.  

3 .  Cont ro l  s t i c k  power drops  d r a s t i c a l l y  w i t h  i n c r e a s -  

i n g  bending mode ampli tude a t  and above t h e  n a t u r a l  f requency.  

4.  The s u b j e c t s  were remarkably a d a p t i v e  i n  t h e i r  

a t t e m p t s  t o  avoid  bending mode e x c i t a t i o n  by e l i m i n a t i o n  
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of the high frequency components from their control 

stick action. 

The reduced gain versus increased bending mode amplitude 

is shown by a slightly different criterion in Fig. 25. The - 
RMS ratio of control stick signal to error signal, V T E ,  
is plotted versus bending mode amplitude for the set of 

fixed base experiments including simulator dynamics. 

This ratio represents a pseudo-gain for the subject that 

ignores dynamics and linear correlation. Once again, pilot 

gain is inversely related to bending mode amplitude. The 

decreasing gain consists of both in increasing RMS error 

and decreasing RMS control power. 

The ratio of the RMS value of the error to disturbance 

signal, qmq 
pilot control strategy on closed loop performance. 

measures the effect of variations in 

- 
Before discussing the main body of j-fi results, 

several tests for spurious variables will be described. 

Three subjects were used for the fixed base experiments 

with the bending mode natural frequency, unbd = 7 rad/sec. 

In order to check, intersubject differences an analysis 

of variance was performed on the results of this series 

of experiments. Intersession and intersubject variances 

were compared for each of the four amplitudes. Fig. 26 

presents the individual tracking run scores for the two 

sessions under study for each of the subjects. Table 10 

shows the results of the analysis of variance. 
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The intersubject interaction was significant at the .05 

level for only one amplitude 2x(nom.). On this basis inter- 

subject interactions were ignored. 

In order to test the importance of subject knowledge 

of the bending mode amplitude and the fixed order of bend- 

ing mode amplitude variations, ten tracking runs were 

taken at an amplitude, 1 . 3 3  nom., 

The experimental coildit ioiis  were: 

and wn = 7 rad/sec. The average, 

unknown to the subject. 

i-2 score was . 8 4  

compared with an expected .70 based on results that will 

appear in Fig. 27. If such a limited amount of data is 

significant at all, it would indicate that subject performance 

at a given amplitude would not improve if the amplitude was 

varied randomly with no information being given to the 

subject. 

On several occasions, e/& scores for the condition r 
of no superimposed bending mode were taken towards the 

end ~f a sess io~l .  No increase in these scores over the 

ones at the start of the session was noted indicating 

no fatigue effects. - 
T h e d m  ratio is plotted against the four 

= 7 rad/sec bending mode amplitudes for the three 

types of simulation, fixed base, moving base, and fixed 
nbd w 

base plus simulator d-ynamics in Fig. 27. The scores 

plotted for each amplitude and type of simulation represents 

the average of all the individual tracking runs for the 

specific condition. 
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i3oth moving and fixed base experiments were performed 

in an attempt to find the relative importance of vestibular 

and visual cues. The fixed base experiments with the second 

order dynamics and dead-zone of the motion sumulator plus 

moving base display and control stick were conducted to 

find the significance of these factors. 

The results show that: 

1. The ratio increases significantly with 

increasing bending mode amplitude. 

2. The attitude error is much larger for moving 

base experiments compared with the fixed base. 

3 .  This difference cannot be completely accounted 

for by any conditions tested in the fixed base plus 

simulated dynamics series. 

4. The attitude error increases less rapidly for 

the moving base and fixed base plus simulated dynamics 

than for the fixed base experiments, 

The first result reflects decreased subject gain and 

phase lead generation. 

The second has been discussed earlier in the chapter. 

Since the rate of attitude error increase is similar 

for the moving base and fixed base plus simulator dynamics, 

the difference between the fixed and moving bas.e rates 

cannot be necessarily attributed to Vestibular effects. 
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Unfortunately, the dead-zone associated with the motion 

simulator suppresses bending mode oscillations, and makes 

fixed and moving base comparisons difficult. 

This emphasizes the fact that moving and fixed base 

differences can be the result of-vestibular effects or 

simulator characteristics. Furthermore, the simulator 

dynamics and non-linearities must be located at a very bab 

place, between the actual position and the displayed posi- 

tion, in this control loop. For this reason, the fixed 

base results are probably more realistic and reliable. 

The same results are plotted in Fig. 28 for the bend- 

ing mode of natural frequency wn = 5 rad/sec. The general 
~~ 

trends are very similar. The ratio has been plotted 

versus amplitude and not effective acceleration. For the 

- same bending mode amplitude, the effective acceleration 

for Wnbd = L I  5 rad/sec is only 1/2 of the 

the case of wnbd = 7 rad/sec. 

acceleration for 

Comparisons of the f?y& ratio for unbd = 5 and 

7 rad/sec are plotted for each type of simulation in 
i- 

Figures 29 through 31 versus amplitude and not effective - 
acceleration. The ratio increased more rapidly 

for wn = 5 during fixed base simulation and for w 

during fixed base plus simulator dynamics. On the other 

= 7 n 

hand, there was little difference during the moving base 

simulation., The only certain conclusion is that one-half 

the acceleration at unbd = 5 rad/sec compared with 
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= 7 rad/sec caused approximately the same performance nbd w 

deterioration. 

The results from the fixed base experiments using a 

disthrbance signal with one-half the RMS value of the 

previous experiments appear in Figures 32 through 35. 

The averaged dv scores for the two sessions at 

both wnbd = 5 and 7 rad/sec are presented in Fig. 3 2 .  

Consistent with the earlier fixed base results, the attitude 

= 5 rad/sec. nbd error for a given amplitude is greater for w 

Fig. 33  contains the results for the same 

conditions. Note, that at each amplitude, the subject gain 

is lower for Wnbd = 5 rad/sec curve and the attitude error 

is greater. This same correlation between gain and error 

holds at each amplitude for the fixed base plus simulated 

dynamics experiments except that the gain is lower and 

= 7 rad/sec, see Fig. 25, nbd attitude error greater for& 

27, and 28. 

With this correlation in mind, the interaction between 

the RMS va3ue of the disturbance signal and the rate of 

increases with respect to bending mode 

amplitude will be examined. Comparisons of the attitude 

error performance for the two disturbance signals at each 

bending mode natural frequency appeqrs in Figs. 34 and 35.  

Somewhat surprizingly, for each non-zero bending mode 

amplitude and both frequencies, the subject's' 4- 
score was better for the high RMS disturbance signal. In 
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addition, for the one high WiS p-w ratio was measured, 
with a higher gain for the low 

fixed base session where the 

the subject operates 

RMS disturbance signal. This 

result is not consistent with the previous high gain ratio- 

low error ratio correlation just discussed. 

The final series of experiments studied two vehicle 

augmentation and control stick filtering schemes. Both 

approaches have been simplified, and the simulated dynamics 

are only first approximations to the actual control systems. 

For all previous experiments, the augmented missile 

dynamics have been similar to those proposed by Hardy, 

et a1,in'Ref.l- To approximate the entire system recommended 

there, a second order stick filter was added in series with 

these dynamics. The effective dynamics as seen by the 

subject appear in Fig. 36a. 

The simplification of the missile augmentation proposed 

by Teper and Jex in Ref. 7 has been discussed in Appendix A. 

The single integration-gain stick filter was placed in 

series with this set of simplified dynamics to form the 

complete system, as shown in Fig. 36b. 

The bending mode amplitude w a s  fixed at the nominal 

value and the natural frequency at 7 rad/sec for all 

experiments in this series. 

Twenty tracking runs divided between two sessions were 

taken for each system. 
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Before discussing the results, the choice of one para- 

meter must be explained. There was some uncertainty 

about the correct choice of maximum control troque for the 

single integration system. Up to the present, the maximum 

torque has been 1.15'/ sec2/B with B = 3.87'. Preliminary 

experiments with both systems indicated that the second 
mapt 

order filter removed about 10% of the pilot response signal, 

and the single integration-attenuation filter output was 

1/3 of the pilot's response. For this reason, the maximum 

control was increased by a factor of three for the latter 

system. 

For these experiments, the 4- ratio was measured 

for both the control stick output and the stick filter 

output signal. As usual, the attitude control was measured - 
by.'. the -/- ratio. 

The results are summarized in Table 11 and show that: 

1. The average ratio for the single integra- 

tion-stabilized dynanics version was .88, compared with 

1.20 for the second order-rate augmented dynamics system 

2 .  Both systems reduced bending mode excitation to an 

occasional oscillation or two at an amplitude of less than 

one-half degree. 

3 .  As mentioned earlier, the single integration filter 

removed a much greater portion of the operator's response 

than the second order filter. 
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4.  The effective pilot gain, as measured after 

the filter, is higher for the case of stable rggid poles 

and single integration stick filter. 

Because of this last reason, the improved performance 

with the approximation to Jex and Teper's proposal may be 

due to the arbitrarily increased control torque. However, 

the complete stabilization of the rigid poles seems like a 

very reasonable suggestion, and should contribute to 

improved performance. On the other-hand, the single 

integration-attentuation filter, suppresses a large per- 

centage of the operator's response. 
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CHAPTER V 

CONCLUSIONS 

From observation of the strip chart recordings, attitude 

error increases and pilot control strategy changes markedly 

with increasing bending mode amplitude. The operator switches 

from a relay-like non-linear response to a combination of 

lower amplitude of pulsing and at times smooth tracking. 

Furthermore,, significant bending mode excitation can develop 

at the lowest amplitude, 1/3 nom., under study. 

The pilot describing functions show that as the bend- 

ing mode amplitude increases, the pilot gain and phase 

lead compensation decrease. The decreased phase lead is 

best accounted for by greater subject dead-time delay. 

The pilot attempts to track the oscillations that occur 

slightly below the bending mode natural frequency, however 

pilot response power decreases sharply at and above the 

natural frequency. 

The RMS ratio of attitude error to disturbance signal 

substantiates quantitatively the increase of attitude 

error with respect to bending mode amplitude. 

The subject performance is much poorer moving base than 

fixed base for all values of bending mode amplitude. The 

pilot exerts approximately the same control power in both 

cases. This results in a lower moving base gain. 
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Fixed base experiments including second order simulator 

dynamics and dead-zone plus the moving base display and 

control did not account for a major portion of the difference. 

The best explanation seems to involve a combination 

of neglected simulator non-linearities, a poorly marked 

and less sensitive moving base display grid, and perhaps 

vestiDular * '  - - - -  L U A ~ ~ ~ ~ ~ ~ ~ ~  ---c*-r;nn uIII and _ _ _ _  insensitivity _ _ _  - to very small 

deflections. 

The rate of increase of the attitude error with respect 

to bending mode amplitude was less rapid moving base 

compared to fixed base. The results were attributed to 

the simulator dead-zone and not to vestibular effects 

because the fixed base plus simulator dynamics results 

show a rate equal to that for moving base experiments. 

For a given amplitude the bending mode with natural 

frequency of 5 rad/sec creates one-half the acceleration 

of the 7 rad/sec mode. Equal amplitudes for the two cause 

an approximately equal performance deterioration. 

Possible spurious effects due to intersubject variance, 

subject knowledge of bending mode amplitude and order of 

occurance, and fatigue were checked and not considered 

important. 

For a given natural frequency and non-zero amplitude, 

the RMS ratios, were typically 10% higher for the 

case of the low RMS disturbance signal compared with the 
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high RMS signal. The high RMS value was twice that of 

the low. 

Highly simplified versions of two proposed vehicle 

augmentation and control stick filter schemes were 

studied experimentally. The results favor the one with 

stable missile rigid poles and single 'integration stick 

filter judged on the basis of attitude error performance. 

Both eliminated bending mode oscillations. 

Because the single integration filtered out much more 

of the subjects response, the maximum available control 

power was arbitrarily increased by a factor of three. The 

attitude error difference may be due to this change. 

A relatively low frequency first bending mode decreases 

pilot lead compensation and closed loop attitude performance 

in addition to creating structural problems. Significant 

effects develop. at bending mode amplitudes equal to one- 

third that sensed at the Saturn V attitude station. Stick 

filters apparently solve the structual problem, but add 

phase lag in series with typically difficult dynamics. 

This requires effective stabilization of the vehicle 

dynamics to alleviate the pilot control problems in the 

presence of disturbance signals. 
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APPENDIX A 

DERIVATION AND SIMPLIFICATION OF SIMULATZON EQUATIONS 

The equations of motion, parameters values, and 

following-diagram are taken from Ref. 1. The equations of 
- . -  motion are linearized and valia for S I I I C ~ L A  --' ' - - -+ i ivhat i  pcL nns about 

the booster's nominal trajectory. The equations are written 

with respect to a coordinate system moving at the booster 

velocity along the trajectory. 

The rigid body equations are listed below: 

57.3 - a = ($rb + - x V 

(A  1.0) 

( A  2.0)  

(A 3.0) 

(P. 4 . 0 )  

Differentiating and rearranging equation(A 3.0)gives: 

(A 5.0) 
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After substitution into (A 1.0) : 

# 

- FBB V 
Faa - F+'rb ( a - '  ) - = -  rb 57.3 (A 6.0)  

Differentiating and rearranging equation (A 2.0): 

Substitution into (A 6.0) results in: 

(A 7.0) 

Rearranging (A 8.0) : 

(A 8 . 0 )  

Using Laplace operator notation: 

(A 9.0) 

'rb - - -  
B 

M B  V + Fa%) Mf3 
(M 57.3 + F B  a 

a V F 
p + F') p3 + - p2 - - V 

(57.3 M 57.3 
c1 Ma 

1 57.3 M 
( p + - -  F B  57.3 + Fa 

M, V 

(A 1 0 . 0 )  

57.3 M F . . I  a 
P 

') (A 10.1) V a p2 - Map + .  3 57.3 F 
V ( p  + - 
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A t  maximum dynamic p r e s s u r e  t h e  parameters  have t h e  

fo l lowing  va lues :  

, 
L 2 

= .14l/sec F = .36 meters/sec /deg 
Ma 0 

F = . 1 3  meters / sec2/deg  a 
M B  = 1.15/SeC 

v = 4 8 6  m/sec F = .30 meters/scc2/deg 
B 

After s u b s t i t u t i o n  of t h e s e  v a l u e s  ( A  1 0 . 1 )  becomes: 

( p  + - 0 2 )  - =  rb  - 1 . 1 5  
2 

a ( p 3  + .0153p - .14p + . 0 0 6 0 )  (A 1 0 . 2 )  

Consider ing on ly  .*#for p = j,, . 4  r ad / sec :  

/{-&I 7 1 and ( p  + . 0 2 )  - L ( p  - .04) = 0' 

For s i m u l a t i o n  purposes ( A  10.3) was s i m p l i f i e d  accorchinyly: 

- -  1.15 
- -  

2 
p - . 15  

( A  11.0) 

(A 1.1.1) 

I f '  r a t e  compensation i s  added, t h e  feedback p o l a r i t y  i n u s t  

be as shown t o  decrease t h e  i n s t a b i l i t y :  
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Then : 

1 .15  - . 75p  (1.15) 
'rb 4)rb = -  

p2- .  1 5  p2 - .15  
(A 1 2 . 0 )  

A f t e r  rearrangement:  

2 

( p  + .86p = .15) = - 1.158 (A  13.0) 02% I 

- 1.15 - -  
( P  + 1.00) (p  - .15) 

( A  14.0) 

( A  14.1) 

The following equations describe the f l e x i b l e  body mode: 

Combining and r ea r r ang ing :  

( A  17.0) 
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The va lues  f o r  t h e s e  parameters a t  maximur? !;ynar:ic 

p r e s s u r e  are: 

= .46/deg-sec 

K-Fl = .OIT'O77/deg 

. K 3 i  = 8.6 deg 

5 = .005 

=- 7.33"rad/sec - nbd w 

A f t e r  s u b s t i t u t i o n :  

( A  1 8 . 0 )  

For convenience,  w was rnade equa l  t o  3w f o r  a l l  P Z 

v a l u e s  of w under  s tudy .  
P 

The t o t a l  a t t i t u d e  e r r o r ,  equa l s  t h e  su of t h e  

r i g i d  body and f l e x i b l e  body c o n t r i b u t i o n s ,  t h e r e f o r e :  

a 
( A  1 9 . 0 )  

The r o o t  l ocus  technique was used t o  f a c t o r  t h e  

numerator.  A s e p a r a t e  r o o t  l o c u s  p l o t  appears  f o r  bo th  

bending mode f r e q u e n c i e s ,  (see F i g .  A1 and A 2 ) .  The 

numerator  must be  w r i t t e n  i n  t h e  fo l lowing  form t o  apply 

t h e  technique  : 

(A 21.0)  



38 

From i n s p e c t i o n ,  t h e  0' c r i t e r i o n  must be used ,  and 

t h e  r o o t  l ocus  g a i n  e q u a l s  1.15/K. 

Roots have been l o c a t e d  f o r  t h e  a p p r o p r i a t e  v a l u e s  of 

K on t h e  t w o  p l o t s .  The r e s u l t s  are l i s t e d  i n  Chapter  I1 

i n  t r a n s f e r  f u n c t i o n  form. The r o o t  l ocus  g a i n s  correspond-  

i n g  t o  bending ampl i tudes  a r e  l i s t e d  below: 

K K Root Locus 

. 0 0 2 2  5 2 2 . 7  

. 0 0 6 6  (nom. ) 1 7 4 . 2  

. 0 1 3 2  8 7 . 1  

. 0 2 6 4  4 3 . 6  

The r o o t  l ocus  g a i n  i s  r e l a t e d  t o  t h e  s p i r u l e  r e a d i n g  

acco rd ing ly :  

( A  2 2 . 0 )  

where S i s  s c a l e  f a c t o r  e q u a l  t o  t h e  number of r a d i a n s / s e c  

r e p r e s e n t e d  by 5" on t h e  p l o t  and pi and q 

t i o n s  of t h e  p o l e s  and zeroes. 

are t h e  loca- i 

I n  this case S = 2 0 ,  so t h e  s p i r u l e  r e a d i n g s  and t h e  

bending mode ampl i tudes  have t h e  f o l l o w i n g '  r e l a t i o n s h i p :  

\p,P,P,P4\ 1 1 - 1 5  ( s p i r u l e  r e a d i n g )  = -- 
\ q 1 q 2 1  sp- 

( A  2 3 . 0 )  
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K 

.0022 

.0066 

.0132 

.0264 

Spirule Reading 

1.77 

.59 
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.15 

Jex and Teper augment the dynamics of the Saturn V 

by feeding back both attitude rate and position. 

of the control stick filter output and the feedback signal 

passes through two first order lags with break frequencies 

at 5 rad/sec. This filtered signal provides the command 

to the engine gimbal. 

function including two bending modes as taken from Ref. 2 

appears below: 

The sum 

The complicated closed loop transfer 

'attitude gyro - - 
stick filter 

0.0050 0.00066) 
) (  . 21 4,900(~+.019) (~+4.5) (s-4.6) ( 12 

1 0.56) (0.038 0.018 0.30 
7.2 ) (  12 ) (  30 (s+0.035) (s+.62) (s+6) (st30) ( 

where (o;io) denotes ( p 2  + 2(.30)30 p + 302) 

( A  24:O) 

The dominant rigid body modes are now stable and have a 

natural frequency of 2 rad/sec and a damping ratio, 5 * .56. 
In order to reduce the complexity of this set of 

dynamics to a level equal to the previous work, the two 

dominant rigid body poles were placed in parallel with the 

s i w ~ l n t e d  first hending mode. 
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The extreme simplification not only reduces the 

complexity, but also, the difficulty of the dynamics 

proposed by Teper and Jex. 

However, in spite of this fact, a first approximation 

to a realizable set of stabilized Saturn V rigid body 

dynamics h d s  been selected. 

The new set of missile dynamics has the following 

form: 

$tot - 
B 

.0066 (p2 + 212) (A 25.0) + 4k - - 
p2 + 2(.56)2p i- 22 (p2 + 2(.005)7p + 7') 

The natural frequency of the bending mode was placed 

at 7 rad/sec and K = .0066 = nom. to correspond closely 

with the Saturn V design conditions. The value of the 

remaining parameter, k, was selected after initial experi- 

ments with this system. The basis for the choice is 

discussed in Chapter IV. With the selected value of 

k = .85, equation (A 25.0) becomes: 

- 
(A 26.0) 

After placing the numerator in a form suitable for solution 

by the root locus technique: 
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= o  ( A  27.0) 
(p2 + (.01)7 p + 72) 

b 
3 . 4  1 -  
.0066 (p 2 + 212) (p2  + 2(.56)2 P + 2 2 

A f t e r  s o l u t i o n  of the root  locus :  

(A 28.0) 



APPENDIX B 

PILOT DESCRIBING FUNCTION MEASUREMENT TECHNIQUE 

The pilot describing functions were computed by the 
5 following equation: 

(Bl. 0)  

where : 

0 1 3 ( w )  = cross power spectral density of the input 

disturbance signal and the operator's 

response. 

@ l z ( w )  = cross power spectral density of the input 

disturbance signal and the displayed error. 

The operator's response contains a part correlated 

with the input disturbance signal and an uncorrelated 

remnant. The degree of correlation determines how well 

a describing function accounts for his behavior. 

This correlation is measured by the following ratio: 

(B2.0) 
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where: 

a l l ( w )  = input disturbance signal power spectral density 

@ 3 3 ( ~ )  = operator's response power spectral density. 

2 If p is near unity the describing function is a 

close approximation to the operator's behavior. 

A program, written by the staff of Health Sciences 

Computing Facility, UCLA, and made available to the Man- 

V e h i c l e  C o n t r o l  Laboratory by Ames Research Center, NASA, 

was used to compute the necessary power spectrums. The 

program was modified in the Man-Vehicle Control Laboratory 

to compute the describing function by (B1.O). 6 

This method computes the power spectral estimates of 

an analog signal T seconds long by sampling every AT 

seconds. 

A total of M = T/AT points are available for compu- 

tation. The correlation function (b(.r) of the sampled signal 

is computed for m lags of AT. 

Under these conditions: 

1. The sampled data will have no spectral power 

above a frequency whigh where: 

(B3.0) - n -- 
high AT w 

2. The spectral density will be computed at m 

equally spaced frequencies between 0 and whigh. 

the frequency resolution will be: 

Hence 
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3 .  The probable  error  of t h e  computed s p e c t r a l  

error w i l l  be: 

I f  N independent s p e c t r a l  d e n s i t i e s  a r e $ a v e r a g e d ,  t h e  

probable  error i s  reduced to: 

For t h i s  work t h e  fo l lowing  v a l u e s  w e r e  chosen: 

T = 70 sec 

AT = 0 . 1  sec 

= t y p i c a l l y  5 

For t h e s e  va lues :  

= 5 cps h i a h  w 

Aw = .07 cpS 

M = 700 p o i n t s  

E =\1""1 5 (700) .14 
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FIG. 7.- NE-2 MOTION SIMULATOR 



53 

c Ibs 

FOQCE 



54 

I -  



55 

FIG. 10.- SUBTECT POSITION AND EQUIPMENT ZX)CATION FOR 
FIXED BASE EXPERIMENTS 



F I G -  11. - SUBJECT POSITION,  CONTROL S T I C K  AND DISPLAY 
LOCATION FOR NOVING BASE E X P E R I b a N T S  
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FIG. 130- STRIP CHART RECORDINGS OF ATTITUDE ERROR 
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FIG. 14. - STRIP CHART RECORDINGS OF PiWT EiE;SFGSE 
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